Kendall's Tau (II) - Co to je, definice a koncept

Jedná se o neparametrické měřítko závislosti, které identifikuje shodné a nesouhlasné páry dvou proměnných. Po identifikaci se vypočítají součty a vytvoří se podíl.

Jinými slovy, pozorováním každé proměnné přiřadíme hodnocení a studujeme závislostní vztah mezi dvěma danými proměnnými.

Existují dva způsoby, jak vypočítat Kendall's Tau; po objednání pozorování každé proměnné se rozhodneme vypočítat vztah závislosti. V našem příkladu uvidíme, že seřazujeme pořadí ve sloupci X vzestupně.

Klasifikované korelace jsou neparametrickou alternativou jako měřítko závislosti mezi dvěma proměnnými, když nemůžeme použít Pearsonův korelační koeficient.

Na tyto výsledky jsme odkazovali v prvním článku -> Kendall's Tau (I):

Lyžařský areál (i) X Z C NC
NA 1 1 6 0
B 2 3 5 0
C 3 4 5 1
D 4 2 4 0
A 5 7 4 1
F 6 6 4 1
G 7 5 43 3 CELKOVÝ
  • Pár BC-CB je sporný pár. Zadáme 1 do sloupce NC a zmrazíme počitadlo na poslední pozici, dokud znovu nenajdeme odpovídající pár. V tomto případě jsme zmrazili počet párů na 5 až do stanice D. Stanice D může tvořit pouze 4 páry: AD-DA, DE-ED, DF-FD, DG-GD.

Další sporný pár by byl EF-FE:

  • Pár EF-FE je nesouhlasný pár. Napíšeme 1 do sloupce NC a pokračujeme v tažení počtu 4 shodných párů, které lze vytvořit. Odpovídající páry stanice E by byly: EA-AE, EB-BE, EC-CE, ED-DE, protože EF-FE je nesouhlasný.
    • Pár FG-GF je sporný pár. Napíšeme 1 do sloupce NC a pokračujeme v tažení čísla 4 shodných párů, které lze vytvořit. Souhlasné páry stanice F s (nezměnili jsme místo 4. Souhlasné páry, které jsme mohli ukázat dříve (nezměnili jsme, by byly: FA-AF, FB-BF, FC-CF, FD-DF. protože FG-GF je nepříjemný.

Počítáme Kendallovo Tau

Kendall's Tau nemá žádné tajemství kromě toho, že je kvocientem shodných a nesouhlasných párů vzorku pozorování.

Výklad

Naše počáteční otázka byla: existuje vztah závislostí mezi preferencemi sjezdových lyžařů a severských lyžařů v daných lyžařských střediscích?

V tomto případě máme závislost mezi dvěma proměnnými 0,8695. Výsledek velmi blízko horní hranici. Tento výsledek nám říká, že alpští lyžaři (X) a severské lyžaři (Z) klasifikovali střediska s podobnou klasifikací.

Aniž bychom museli provádět jakýkoli typ výpočtu, vidíme, že první stanice (A, B, C) dostávají nejlepší skóre od těchto dvou skupin. Jinými slovy, hodnocení lyžařů se řídí stejným směrem.

Srovnání: Pearson vs Kendall

Pokud vypočítáme Pearsonův korelační koeficient vzhledem k předchozím pozorováním a porovnáme jej s Kendall's Tau, získáme:

V tomto případě nám Kendall's Tau říká, že existuje silnější závislostní vztah mezi proměnnými X a Z ve srovnání s Pearsonovým korelačním koeficientem: 0,8695> 0,75.

Pokud by odlehlé hodnoty měly velký vliv na výsledky, našli bychom velký rozdíl mezi Pearsonem a Spearmanem, a proto bychom měli použít Spearmana jako měřítko závislosti.

Populární Příspěvky

Jaká bude příští bublina na akciovém trhu?

V posledních měsících vidí investoři konec expanzivní měnové politiky blíže než kdy dříve. Navzdory nedávným poklesům na akciových trzích byl však růst cen v posledních letech pozoruhodný. Nejen na jednom trhu, ale na několika trzích. Takže Číst více…

Ropa dosáhla tříletých maxim: Proč nyní ropa roste?

V prostředí, kde Organizace zemí vyvážejících ropu (OPEC) omezuje těžbu ropy, ceny ropy dosáhly tříletých maxim. Zároveň, a na základě výše uvedeného, ​​výhled inflace ukazuje na růst. V roce 1973 představovala spotřeba ropy Přečíst více…

Analýza a prohloubení je vždy dobrý nápad

Nalezení vhodné strategie obchodování na Forexu není tak snadné. Je však obtížnější vyvinout vlastní obchodní strategie a systémy, což může vyžadovat mnoho let pečlivého výzkumu a nekonečných experimentů na trhu. Samozřejmě nikdo nevytvoří bezchybnou strategii. I když vám níže uvedený materiál může pomoci, přečtěte si více…