Příklad distribuce Bernoulli

Obsah:

Anonim

Bernoulliho distribuce je teoretický model používaný k reprezentaci diskrétní náhodné proměnné, která může skončit pouze dvěma vzájemně se vylučujícími výsledky.

Doporučené články: ukázkový prostor, Bernoulliho distribuce a Laplaceův zákon.

Bernoulliho příklad

Předpokládáme, že jsme velmi fanoušci jezdce v cyklistické soutěži, ve které soutěží pouze dva jezdci. Chceme se vsadit, že broker vyhraje.

Pokud tedy vyhrajete, bude to výsledek „úspěchu“ a pokud prohrajete, bude to výsledek „bez úspěchu“. Schematicky:

S tímto příkladem jsme zacházeli jako s dichotomickým případem. To znamená, že existují pouze dva možné výsledky (pro zjednodušení situace). V teoretických knihách najdeme typický příklad losování neoklamané mince, které spočívá v získávání hlav nebo ocasů. Protože již neexistují žádné další možné výsledky, stane se získání parametru p elementárním.

V našem příkladu makléře jsme také mohli považovat za „neúspěšné“ získání jiné pozice než prvního. Pak by se změnil parametr p a byl by to počet, kolikrát může být broker nejprve vydělen počtem celkových pozic. Schematicky:

Zde se parametr p na první pohled nezdá příliš zřejmý, ale jde pouze o aplikaci Laplaceova zákona.

Předpokládáme, že existuje pouze 10 pozic, ve kterých může běžec v závodě získat pouze jednu z nich. Pak,

Cvičení

Vypočítejte funkci distribuce běžců v soutěži 10 běžců.

Bernoulliho distribuční funkce

  • Přístup.

Definujeme dvě hodnoty, které může mít náhodná proměnná, která následuje po Bernoulliho distribuci.

Z = 1, pokud závodník zvítězí v soutěži = 1. místo = ÚSPĚCH.

Z = 0, pokud běžec prohraje soutěž = ne 1. místo = NEÚSPĚŠNÉ.

  • Přiřazení a výpočet pravděpodobností.

Jakmile jsme definovali hodnoty Z, přiřadíme pravděpodobnosti výsledku experimentu:

Nahoře v příkladu jsme již vypočítali pravděpodobnosti pomocí Laplaceova zákona. Výsledkem bylo, že p = 1/10 a (1-p) = 0,9.

  • Výpočet distribuční funkce.

Nyní musíme nahradit předchozí proměnné ve vzorci distribuční funkce.

Vidíme, že předchozí výrazy lze vyjádřit také takto:

Vidíme, že při použití tak či onak bude pravděpodobnost úspěchu, tedy pravděpodobnost, že běžec vyhraje soutěž, vždy p = 1/10 a pravděpodobnost neúspěchu, tedy pravděpodobnost, že prohraje. soutěž bude také vždy (1-p) = 9/10.

Běžec tedy sleduje Bernoulliho rozdělení s pravděpodobností p = 0,1: