Darmoisova věta - co to je, definice a pojem

Darmoisova věta je věta, která umožňuje najít statistiku T pro parametr θ s vlastností dostatečného.

Ještě jednoduššími slovy umožňuje nalezení matematického výrazu dostatečné statistiky, pokud existuje.

Ve vztahu ke kritériu Fisher-Neymanův faktoring můžeme uvažovat. Kritérium Fisher-Neymanův faktoring slouží jak ke kontrole, zda statistika splňuje vlastnost dostatečné, tak k nalezení matematického vyjádření dostatečné statistiky (pokud existuje). Naproti tomu Darmoisova věta umožňuje najít pouze matematické vyjádření (pokud existuje) dostatečné statistiky.

Řekněme, že zatímco Fisherovo-Neymanovo faktoringové kritérium se pohybuje dopředu (vyhledávání) a dozadu (kontrola), Darmoisova věta se pohybuje pouze dopředu (vyhledávání).

Darmoisova věta

Teoreticky je to vyjádřeno vzhledem k jednoduchému náhodnému vzorku náhodné veličiny X s hustotní funkcí f (x; θ) s θ ∈ Ω. Pokud tato funkce patří do exponenciální rodiny, to znamená, lze ji vyjádřit tak, že:

f (x; θ) = β (θ) × b (x) × e (a (x) × α (θ)

Pak statistika T = T (x1,…, xn) = Σ a (x)

Pro usnadnění výpočtů se obvykle provádí logaritmická notace:

lnf (x; θ) = lnβ (θ) + lnb (x) + (a (x) × α (θ))

Samozřejmě je těžké pochopit celou tuto matematickou notaci. Objeví se mnoho neznámých, mnoho písmen, mnoho operátorů. Pojďme to znovu definovat hovorovými slovy. Za tímto účelem začneme s teoretickou definicí aplikovanou na příklad:

Předpokládejme náhodný vzorek 50 dětí (jednoduchý náhodný vzorek), kterým se zeptáme, kolik peněz za týden utratí za sladkosti (náhodná proměnná X) s danou funkcí hustoty (viz funkce hustoty). Pokud tedy tuto funkci hustoty můžeme vyjádřit takto:

Zjistíme, že dostatečná statistika je součtem výrazu a (x)

Části vzorce jsou definovány takto:

  • lnβ (θ): Je to funkce, která závisí pouze na parametru (v našem případě průměr)
  • lnb (x): Je to funkce, která závisí pouze na náhodné proměnné X
  • a (x): Je to funkce, která závisí pouze na X a vynásobí α (θ)
  • α (θ): Je to funkce, která závisí pouze na parametru (v našem případě průměr)

Darmoisova věta v praxi

I když všichni máme schopnost a nástroje objevovat nové statistiky, je to zřídka normou. Jinými slovy, profesoři ekonomie a odborníci v oboru provádějí výzkum těchto témat.

Z osobního hlediska je těžké najít někoho, kdo by se věnoval tomuto typu výzkumu. V praxi je tedy důležitou věcí této věty pochopit, odkud pocházejí tyto statistiky, které používáme.

Například pro někoho, kdo zjistí, že průměr je dostatečná statistika, pravděpodobně použil tento proces.

Populární Příspěvky

Nezaměstnanost v březnu poklesla o 60 214 osob, což je nejlepší hodnota od roku 2002

Počet nezaměstnaných registrovaných v kancelářích veřejných služeb zaměstnanosti ve Španělsku činil na konci března 4 451 939 osob, poté co poklesl o 60 214 nezaměstnaných ve srovnání s předchozím měsícem, což je největší pokles za měsíc březen od roku 2002. část Sociální Přidružení k zabezpečení se v březnu zvýšiloPřečtěte si více…

Největší banky na světě 2015

Zde je seznam největších bank na světě podle jejich tržní kapitalizace v roce 2015. Letos se síla Číny opět projevuje v globálních financích.…

Agentura Moody's varuje před hospodářským zpomalením ve Španělsku po volbách

Agentura pro hodnocení rizik Moody's v úterý zveřejnila zprávu varující před rizikem zpomalení, kterému může Španělsko čelit, se zvláštním důrazem na předvídatelné „obtíže“, kterým bude muset vláda čelit tváří v tvář reformám, které chce nastolit. Zpomalení, se kterým máme co do činění, lze dokonale pozorovat v části Číst více…